TEL:05-2717916
E-mail: fttsai@mx.nthu.edu.tw
1. Basic Information
(a) Postdoctoral Research Fellow (2009/08/01~2010/07/31) (National Tsing Hua University, Advisor: Prof. Wen-Feng Liaw)
(b) Alternative Military Service (2010/08/02 ~ 2011/07/02)
(c) Postdoctoral Research Fellow (2011/08/01 ~ 2013/01/31) (National Tsing Hua University, Advisor: Prof. Wen-Feng Liaw)
(d) Visiting Scholar (2013/02/25 ~ 2014/02/28) under the auspice of Ministry of Science & Technology, Taiwan (Texas A&M University, Advisor: Prof. Donald J. Darensbourg)
(e) Postdoctoral Associate (2014/03/01 ~ 2015/12/31) (Texas A&M University, Advisor: Prof. Donald J. Darensbourg)
(f) Postdoctoral Research Fellow (2016/02/01 ~ 2025/07/31) (National Tsing Hua University, Advisor: Prof. Wen-Feng Liaw)
(g) Assistant Professor (2025/08/01
~ ) (National Chiayi University)
2. Education
National
Tsing Hua University, Ph. D. (2009)
NationalChunghuaUniversityof Education,
B. S. (2003)
3. Field of Specialty
Inorganic Chemistry, Catalytic Chemistry, Chemistry of Renewable Energy, Green Chemistry, Material Chemistry, General Chemistry
4. Subject of Instruction
Inorganic Chemistry, Catalytic Chemistry, Chemistry
of Renewable Energy, Green Chemistry, Material Chemistry, General Chemistry
5. Research Interests
With growing concerns over industrial energy crisis and global climate change, electro/photocatalytic CH4 oxidation and CO2 reduction offer promising approaches to achieve the goals of carbon neutrality and net zero emission, in reliance with converting and storing intermittent/diffusive green energy into chemical energy convenient for storage and transportation. The specific microenvironment makes the active sites in SAC/DAC catalytic systems promote reactions at an accelerated rate with the preservation of catalytic selectivity and chemical stability. Meanwhile, various types of defects that work together from nano, micro to macro ranges endow one photo/electrocatalyst with multiple functions to thermodynamically manage the adsorption, migration and coupling of CH4/CO2-derived intermediates in kinetics. This work may provide more possibilities for further advancements in the design/development of high-performance catalysts for CH4/CO2 valorization compatible with the current energy infrastructure.
6.Publications list
1. Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F.* Inorg. Chem. 2005, 48, 9579−9591.
2. Tsai, F.-T.; Kuo, T.-S. ; Liaw, W.-F.* J. Am. Chem. Soc. 2009, 131, 3426−3427.
3. Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I-J.; Lee, J.-F.; Liaw, W.-F.* Inorg. Chem. 2009, 48, 9579−9591.
4. Tsai, F.-T.; Chen, P.-L.; Liaw, W.-F.* J. Am. Chem. Soc. 2010, 132, 5290−5299.
5. Shih, W.-C.; Lu, T.-T.; Yang, L.-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F.* J. Inorg. Biochem. 2012, 113, 83−93.
6. Tsai, F.-T.*; Lee, Y.-C.; Chiang, M.-H.; Liaw, W.-F.* Inorg. Chem. 2013, 52, 464−473.
7. Tsou, C.-C.; Tsai, F.-T.; Chen, H.-Y.; His, I-J.; Liaw, W.-F.* Inorg. Chem. 2013, 52, 1631−1639.
8. Darensbourg, D. J.*; Tsai, F.-T., Macromolecules 2014, 47, 3806−3813.
9. Darensbourg, D. J.*; Chung, W.-C.; Arp, C. J.; Tsai, F.-T.; Kyran, S. J. Macromolecules 2014, 47, 7347−7353.
10. Tsai, F.-T.; Wang, Y.; Darensbourg, D. J.* J. Am. Chem. Soc. 2016, 138, 4626−4633.
11. ***J. Am. Chem. Soc. 2017, 139, 67−70.
12. Tsai, F.-T.*; Wang, H.-C.; Ke, C.-H.; Liaw, W.-F.* ACS Appl. Energy Mater. 2018, 1, 5298−5307.
13. Ke, C.-H.; Shih, W.-C.; Tsai, F.-T.*; Tsai, M.-L.; Ching, W.-M.; Hsieh, H.-H.; Liaw, W.-F.* Inorg. Chem., 2018, 57, 14715−14726.
14. Palanisamy, S.; Wang, Y.-L.; Chen, Y.-J.; Chen, C.-Y.; Tsai, F.-T.; Liaw, W.-F.; Wang, Y.-M.* Molecules 2018, 23, 2551−2566.
15. Liu, P.-H.; Tsai, F.-T.*; Chen, B.-H.; Hsu, I-J.; Hsieh, H.-H.; Liaw, W.-F.* Dalton Trans. 2019, 48, 6040−6050.
16. Tsai, F.-T.*; Deng, Y.-T.; Pao, C.-W.; Chen, J.-L.; Lee, J.-F.; Lai, K.-T., Liaw, W.-F.* J. Mater. Chem. A, 2020, 8 ,9939−9950.
17. Tsai, F.-T.*; Chuang, Y.-Y.; Hsieh, H.-H.; Chen, Y.-H.; Pao, C.-W.; Chen, J.-L.; Lu, C.-Y.; Hao, C.-K.; Liaw, W.-F.* ACS Appl. Energy Mater. 2022, 5, 5886−5900.
18. Habib, I.; Lu, T.-T.*; Sabbah, A.; Chen, K.-H.; Tsai, F.-T.; Liaw, W.-F.* Inorg. Chem. 2022, 61, 20719–20724.
19. Li, K.-C.; Wu, Z.-H.; Ke, C.-H.; Lee, Y.-C.; Lee, J.-F.; Chen, J.-M.; Haw, S.-C.; Tsai, F.-T.*; Liaw, W.-F.* J. Mater. Chem. A 2023, 11, 2377–2390.
20. Kao, B.-H.; Zeng, Y.-F.; Lee, Y.-C.; Pao, C.-W.; Chen, J.-L.; Chuang, Y.-C.; Sheu, H.-S.; Tsai, F.-T.*; Liaw, W.-F.* Small 2024, 20, 2307910.
21. Wu, W.-Y.; Zheng, W.-Y.; Chen, W.-T.; Tsai, F.-T.*; Tsai, M.-L.; Pao, C.-W.; Chen, J.-L.; Liaw, W.-F.* Inorg. Chem. 2024, 63, 2431–2442.
22. Yang, C.-C.; Makovetskyi, S.; Yang, Y.-C.; Hsu, I-C.; Hsieh, S.-H.; Lee, Y.-C.; Haw, S.-C.; Tsai, F.-T.*; Liaw, W.-F.* Small 2025, 21, 2503278.