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教育公平性測量： 

Gini 係數衍生指標的效能分析 
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摘  要 
本模擬研究旨在探討 11 種 Gini 係數導向的相對效能與 X 軸等份分割數、教育資料分配型

態及離散程度屬性間之關係。一般而言，教育 Gini 係數的相對效能會受到資料的組別數、離散

程度與分配型態所支配。教育 Gini 係數的測量正確性會，隨著組別數的增加或離散程度的降低

而改善。不管資料的組別數、離散程度與評鑑效標為何，G1 與 G2 指標在資料出現正偏時會產

生最大的估計誤差，在資料出現負偏時會產生最小的估計誤差。 其它的教育 Guni 指標 G3, G4, 
G5, G6, G7 僅在組別數為 5 且資料出現正偏時，會出現類似最大估計誤差；在組別數為 10 且

資料出現負偏時，也會出現類似最大估計誤差；當資料呈現常態時，其估計誤差最小。除了 G1
之外，其它的教育 Guni 指標均出現低估現象。G1 似乎比較適合於組別數小於 5 的情境。因此，

指標的選擇與應用方式對於結論會產生重大的影響力。假如組別數等於或小於 5 或估計誤差無

法容忍時，建議將 G3, G4, 與 G5 等係數乘以向上校正因子（n /(n-1)）。 
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The educational attainment of society members is closely related to economic growth, 
social stability, social wellbeing, and people’s health. As Harbison & Myers (1965) put 
it, ”Education is both the seed and the flower of economic growth ”. The topic of educational 
attainment divide, perhaps the most manifest evidence of income, earning, and opportunity 
inequality, has attracted much attention in recent years (Appiah-kubi, 2002; Checchi, 2001; 
Lopez, Thomas & Wang, 1998; Thomas, Wang & Fan, 2000 & 2002; Wahyuni, 2004) 
because equal access to education is widely viewed as an indispensable human right by 
which mobility in social classes can be facilitated so that social unrest or conflict can be 
lessened. Therefore, the educational divide in educational attainment is most concerned in 
developing and under-developed countries because it is “a critical underlying driver of the 
vicious circles of poverty observed at the household, regional, and national levels” ( Perry, 
Arias, Lopez, Maloney & Serven, 2006). 

To assess the magnitude of existing divide in educational attainment, various forms of a 
given Gini index have been developed by researchers in social science. The existence of 
these various computational forms has created several problems. First, in estimating 
educational inequality, it is difficult for a researcher to pick an optimal index from among 
these measures. Second, little is known about the relative size of estimated errors that arise 
from each of these inequality measures. Third, although Yitzhaki (1998) and Deltas (2003) 
reported that the use of grouped data caused ” a downward bias in estimates of inequality”, it 
is not clear whether these measures are sensitive to the true population form of education 
distribution and how many groups should be used for optimally plotting the Lorenz curve by 
which the Gini coefficients are estimated. Obviously, it is critical to pin-point which index is 
under-estimated or which index is over-estimated to take an educated policy of education. 
Therefore, identification of optimal measure(s) of Gini indices under different forms of 
education distribution and different data grouping sizes deserves further investigation. 

 
 

Method 

Inequality Measures 
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Lorenz curves, and the Gini coefficient are often used in income equity analyses that 
solely concern the dispersion of income distribution, independent of the mean of that 
distribution.  Take Figure 1 as an example of education attainment, the Lorenz curve 
connects the cumulative proportion of the population at each level of education attainment in 
the horizontal axis with the corresponding cumulative proportion of schooling in the vertical 
axis (The dark boxes on the Lorenz curve stand for a given year of schooling).  

 

 
Figure 1.  A Lorenz plot for schooling at each education level 
 

Visually, the further the curve departs from the 45 degree line (indicating equal 
attainment), the greater the extent of inequality. The area under the Lorenz curve (B in 
Figure 1) can be obtained via definite integration if the exact mathematical function (LCDF 
in a linear, or quadratic, or cubic, higher-order form) representing the Lorenz curve exists. 
The area in the X-Y box is defined as 1.0 so that the area under the line Y=X is .5(i.e., A+B). 
Then, the Gini coefficient can be indirectly calculated as. 
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Thus, the geometric interpretation of the Gini coefficient is the Lorenz curve (Deaton, 
1997; Xu, 2004).   

 

The Gini Family 

The Gini coefficient, originally developed by the Italian statistician, Gini (1912), is in 
essence a measure of variance. The extent of inequality displayed by the Lorenz curve (See 
Figure 1) can be measured by the Gini coefficient, which is defined as the ratio of the area 
between the Lorenz curve and the 45 degree line (A) over the total area under the 45 degree 
line (A+B), numerically equal to 2A (Xu, 2004). The Gini coefficient takes values between 0 
and 1, with higher values indicating greater inequality. Generally speaking, a value of zero 
indicates complete equality； below 0.2: high equality；between 0.2~0.3：moderate equality; 
between 0.3~0.4：bearable；between 0.4~0.6：moderate inequality; above 0.6：high inequality; 

a value of 1:complete inequality. Since the Gini index in a developed country falls usually 
between .24 and .36. Thus, 0.4 is often regarded as an alerting cordon. As the Gini 
coefficient increases above .6, social unrest or violence may occur, because poverty or 
inequality tends to force people to fight for power or wealth (Kluge, 2001).   

Because the exact numerical function for the Lorenz curve is not available, numerical 
definite integration of the area under the Lorenz curve is nearly impossible. Yet, a dozen 
alternative ways of computing Gini coefficients exist (Yitzhaki, 1998; Coulter, 1989). Xu 
(2004) reviewed 80 years of research on Gini’s index and found that it can be computed in 
four basic forms: (1) geographic form, (2) mean difference form, (3) covariance form, and (4) 
matrix form.  Further, within each of these four forms there are different ways to compute a 
Gini-based index.   In the present study we focus on eleven well-known Gini-based indices 
that were investigated in Xu’s (2004) literature review. They are classified in terms of data 
unit of analysis and listed below and renamed (inside parenthesis) for quick cross-reference:  

I. Full sample raw data approaches 
1. Jackknife mean Gini (M1) 
2. pair-wised Gini’s relative mean-difference without repetition (M2) 
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3. pair-wised Gini’s relative mean-difference with repetition (M3) 

II. Grouped data approaches 
1. Cumulative percentage/ratio differences (G1, G4) 
2. Absolute values of relative ratio differences (G2) 
3. Trapezoidal approximation approach (G3, G5), 
4. Parabolic approximation approach (i.e., Simpson’s method, G6),  
5. Absolute values of mean differences approach (i.e., Education Gini, G7). 
6. Definite integration(DI)  

In terms of data-entry methods, indices are calculated either from (1) unclassified 
individual raw data, as in M1, M2, M3 or (2) grouped data (usually in quintile or decile data, 
or in natural categories), as in G1~G7. With the grouped data, grouping or sorting of 
observations is required.  They are usually in the form of relative or cumulative percentages. 
Due to the grouping of observations, differences within group are ignored (Lerman & 
Yitzhaki, 1989) so that grouped-indices will be under-estimates (downward biased). These 
11 investigated indices of inequality are briefly defined below: 
1. M1, also named as Jackknife mean Gini, is defined by Ogwang (2000) 

Ogwang’s (2000) method for computing the Gini index and its modified Jackknife 
standard error entails the following steps： 

(1) Get the target variable defined, such as income (INC),where the target variable is 
arranged in ascending order and create a dummy variable N representing a vector of 
1,2,3,…,n, 

(2) Generate the cumulative INC, such as CINC and compute a weighted INC , 
WINC=INC*N, 

(3) Compute necessary summary statistics: total income, TINC and total weighted income, 
TWINC, 

(4) Calculate the Gini index with all the N observations: 
   GNO=(2/N)×(TWINC/TINC)-1-1/N 

(5) Calculate the Gini index with the kth observation deleted (Jackknife’s estimate) by the 
formula shown below: 
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(6) Calculate the mean of the Jackknife’s Gini indexes,M1=ΣGNK/N 
(7) Compute the Jackknife standard error: 
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For the normal distribution, as N increases, the standard error of Gini’s mean difference 

can be also approximated by the following formula (Nair, 1936; Cowell, 1995).  
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where N is the number of observations, Yi is the ith observation.     
The standard error formula (Gerror) can be applied to M2, M3, G7, and other types of 

indices that are derived from the individual observations without grouping. 
2. M2, based on Gini’s relative mean differences of pair-wise comparisons without repetition 

Gini (1912) showed that the Gini index is closely related to Gini’s relative mean 
difference. In fact, the Gini index can be expressed as half the Gini’s relative mean difference. 
Due to the pair-wise comparisons without repetition of each data point itself, there are 
merely n(n-1)/2 pairs of comparisons (Stuart & Ord, 1987; Deaton, 1997; Xu, 2004). In the 
equation of M2 shown below, the absolute mean differences divided by the mean of the Y 
distribution is what Gini called the relative mean difference (in a way similar to the relative 
average deviation, which takes into account the mean for controlling central tendency). M2, 
also known as Gini’s coefficient of concentration, is expressed as: 
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where n is the number of observations, Yi is the ith observation.  M2 is the typical Gini 
coefficient and can be calculated via any of the three approaches shown above, of which the 
last approach requires a sorted Yi in a descending order.  
3. M3, based on Gini’s relative mean differences of pair-wise comparisons with repetition 

M3 is also based on Gini’s (1912) mean difference concept; yet, it includes all possible 
pairs of comparisons. This is the reason why the total mean difference is divided by n2  

rather than n(n-1).  There are two approaches to compute M3. 

where n is the number of observations, Yi is an individual observation. For the first 
approach, descending sorting is required for the individual observations and each 
observation is weighted by its rank.  

4. G1, in cumulative percentages at each group of equal size, is expressed as  
where Xi & Yi are cumulative percentages for X and Y, respectively, n is the number of the 
classified intervals. G1 as defined in the present study, has been empirically proved to be an 
unbiased estimate for small-samples (see later explanation in the results section). 
5. G2, basically a summary measure of pair-wised deviation of data (Burt & Barber, 1996), is 
defined as 

where Xi & Yi are the relative ratio at the ith category of X & Y, respectively.  It can be 
viewed as the sum of a series of triangles and rectangles.  
6. G3, estimated by the trapezoidal approximation to the integral, is expressed as 

where Xi & Yi represent the cumulative percentages of X & Y. G3 can be redefined as： 
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where X0=0，Y0=0。 

7. G4 is expressed as 

where Xi=1/n (n is the number of intervals with equal size), Data on Yi are the cumulative 
percentages for Y. Sorting is required for G4 (Left Business Observer, 1996). 
8. G5, a trapezoidal estimate for the integral, is defined as 

    The error in approximating an integral by the trapezoidal method will result in a value 

less than ,
4 2n

k
 k is the maximum value of the 1st derivative for G(x) (Espericueta, 2001). 

As the number of the intervals (n) increases, the estimation error decreases.   
9. G6, the parabolic approximation approach, also named as Simpson’s method, is defined by 

Note the last term that reveals a close relationship with the Trapezoid approach (cf, G3 
& G5). G6 can also be estimated by 
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Since the exact parabolic function, f((Xk-1+Xk)/2) cannot be known in advance, it is 
approximated by the average of Yk-1+Yk as shown in the equation. This will lead to an 
identical result with the Trapezoid estimate as defined in the present study. 
10. G7, Education Gini Coefficient 

The conventional Gini index cannot be computed for education data, because (1) 
individual education attainment data points are likely not available, and (2) education 
attainment in years of schooling is a discrete variable (usually between 0~22 years) so that 
the continuous approximation of a truncated Lorenz curve (with a kinked line) has been 
deemed unnecessary and inappropriate. Therefore, Thomas, Wang, and Fan (2000 & 2002) 
developed a different formula to accommodate the special features of the schooling 
distributions. They called this newly-formulated index the Education Gini Index. The 
computation of M2 entails the following procedures: First, the years of schooling are 
classified into three cycles of education: primary, secondary, and tertiary. Then, each 
collected data point is assigned a specific monotonically increasing year of schooling value 
according to the following scheme:  
1. illiterate(Y1=0) 
2. partial-primary(Y2=0.5Cp) 
3. complete primary(Y3=Cp) 
4. partial-secondary(Y4= Cp + 0.5Cs) 
5. complete secondary(Y5=Cp + Cs) 
6. partial-tertiary(Y6=Cp + 0.5Ct) 
7. complete tertiary(Y7=Cp + Cs+ Ct) 
where Cp is the cycle of the primary education (usually Cp = 6); Cs is the cycle of the 
secondary education (usually Cs = 6); Ct is the cycle of the tertiary education (usually Ct = 
4).  

To be consistent with the more common education system used world-wide, four cycles 
of schooling were adopted. The additional fourth cycle of education named “advanced” (Ca) 
is added for graduate schools. The years of schooling at this advanced level could extend 
from 2 to 6. Adopting this classification scheme sets a ceiling value of 22 on education 
attainment in the simulations which follow.   

To be consistent with the simulation study design, 5 levels and 10 levels of schooling 
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(between 0~22) are adopted (rather than the educational levels just described above) for use 
in the present study. Take 10 levels for example, the average year of education attainment 
and its standard deviation are defined by: 

 
where N is the total observations, Pi stands for the proportion of population with a given 
level of schooling. Note that iY , jY are the average years of schooling at different 

educational attainment levels (not the number of years at different education levels as 
defined by Thomas, Wang, and Fan (2000), n is the number of categories/levels in education 
attainment data.  
11. DI, definite integration 
It is actually integrated using a theoretical Lorenz curve (See details below). 

 
 

Simulation Design 

Procedures for the data simulation 

    The data were simulated in the following steps:  
(1) set up three types of education attainment distributions (positively skew, negatively skew 

and normal) for the Y axis,  
(2) determine the theoretical distribution form for the X axis,  
(3) pick the number of intervals, and  
(4) estimate the optimal function G(x)(0≤G(x)≤1).   

To compare the theoretical area under the Lorenz curve and its estimated area, an 
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optimal integral function, G(x), derived from the Lorenz curve is needed. Through the area 
comparisons, different inequality measures estimated from the Lorenz curves can be 
evaluated.  
Specifically, G(x), is estimated using the following steps: 
(1)  The uniform distribution of X is equally divided into 5 or 10 intervals (simulate 

horizontal equality). Get the cumulated percentage for each interval. This is the 
theoretical distribution. 

(2)  According to the pre-specified distribution of Y (positively skew, negatively skew and 
normal), divide it into 5 or 10 grouping intervals. Get the cumulated percentage for each 
interval. This is the observed distribution. 

(3)  Estimate the optimal G(x) by regressing Y, as criterion values, over X , as predicting 
values. The optimal G(X) function is selected to best fit the simulated data (R2 is as 
large as possible). The line of best fit can be obtained using SPSS Non-linear 
Regression subroutine (pick the quadratic and cubic form , the ANOVA table term and 
constant not-included term). 

Experimental Conditions 
Three factors were manipulated: education attainment (low, average, high), 

dispersion of education attainment (large, moderate, small), and number of groups 
used (5 and 10). Mainly for the horizontal equality issue, uniform distribution is 
assumed for the X variable. With 5 or 10 groups, each group has a value of .2 or .1, 
respectively for the X variable.  For the Y variable, a positively skewed distribution 
of education attainment was simulated to reflect under-developed countries, a normal 
distribution for developing countries, and a negatively skewed distribution for 
developed countries. Based on the study design, there are 3 x 3 x 2=18 types of data 
conditions in the present study, as shown in Table 1. 
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Table 1  
Study design for the simulations of 18 conditions 
Factors involved 
# of intervals(X axis)                     5                10      
Dispersion of education(Y axis)        L*   M   S       L    M    S 

     Positive (9)          1    2   3        4    5     6 
Distribution  Normal (11)            7    8   9       10   11    12 

Shape**    Negative (13)          13   14  15       16   17    18 
Note: *L is referred to Large standard deviation (SD=5), M for moderate standard deviation 
( SD=3.5), S for small standard deviation (SD=2).  **The average years of the positively 
skewed, normal and negatively skewed distribution of education attainment are 9, 11, and 13, 
respectively. 

 

Data Generation Engine 
To generate realistic data, a method using 4-parameters proposed by Ramberg, 

Tadikamalla, Dudewicz and Mykytka (1979) was adopted. It is defined by the percentile 
function shown below: 
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where p is a uniform random variable, λ1 is a location parameter, λ2 is a scale parameter, λ3、

λ4 are shape parameters. 
Several lambda parameters, as shown in Table 2, were chosen in accordance with 

typical types of distribution of education attainment specified in Table 1. 
 

Table 2  
Parameters set up for the three types of distributions in the study 

g1      g2        λ1      λ2       λ3           λ4 
Distribution  Skewess  Kurtosis   Location   Scale    Shape    Shape  

Normal        0       0         0       .1974    .1349    .1349 
Positive        1.0     3.0       -.379   -.0562   -.0187    -.0388 
Negative       -1.0     3.0        .379  -.0562   -.0388    -.0187 

To generate data that mimic real education attainment data for most of the countries in 
the world, a linear transformation was performed on each generated value (E) and the 
re-scaled value (Y) was trimmed to make sure each data point fell between 0 and 22. 
    Y=SD x E + Mean 
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where SD and Mean are the standard deviation and average schooling, which are as specified 
in Table 1. The forgoing procedure steps were repeated 1000 times for each simulated 
condition. 
    To generate data that looks like data from underdeveloped countries (positively skewed), 
data from developing countries (normal distribution), and data from developed countries 
(negatively skewed), the three hypothetical levels of average schooling as 9, 11, and 13 years 
of education attainment were employed. This average schooling factor was crossed with 
three types of schooling dispersion, as 2, 3.5, and 5 years of standard deviation to reflect a 
small, a medium, and a large variance, respectively.  In total, 18 data set conditions were 
generated in the study.  Because the years of schooling is usually limited to a range of 0~22, 
any generated data point for education attainment beyond 22 was deleted. This truncation 
produced a slight deviation from pre-specified mean, variance, skewness, and kurtosis and a 
downward estimate in schooling average. As a result, the data sets used in the study were 
chosen usually with several runs of the program to pick data sets that fit the pre-specified 
parameters.  

The theoretical model of a Lorenz curve and its definite integration for generated data 
of education attainment 

As data is generated for a given condition and transformed into equal-size sub-group 
proportions, the optimal mathematical function, G(x), was estimated by non-linear regression.  
Take the 18th condition for example, given a uniform X variable classified into 10 intervals 
and with a standard deviation of 2 (small SD) and a mean of 13 (negative skewness), specific 
steps for obtaining the theoretical model of a Lorenz curve and its definite integration 
follow: 
1. Computing descriptive statistics (as shown in Table 3) for a specific generation condition 
Table 3  

Descriptive statistics for the 18th study condition in Table 1 

N Mean SD Skewness Kurtosis 

1000 12.533 2.0187 -.81667 2.05957 
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   Owing to the data truncated to range within 0~22, the summary statistics deviate 
slightly from the set-up condition (M=13, SD=2, Skewness=-1, Kurtosis=3). 
 

2. Obtaining raw data points for each interval 
   The subtotal of education attainment within each interval is shown below: 

849.00  1062.00  1157.00 1200.00 1254.00  
1300.00 1318.00  1400.00 1441.00 1555.00 

3. Getting the optimal function, G(x) and its integration 
With the interval data transformed into cumulated proportions, Y, as a criterion and the 
cumulative proportions from the X (predicting) variable as shown in Table 5, the optimal 
function, G(x)=.746713x+.254704x2, is obtained using SPSS non-linear regression. The area 

under the G(x) curve is integrated as ≈.45826. Its corresponding Gini coefficient can be 
calculated: 1- 2 x .45826≈.08348 

Based on the G(x) function, almost identical data set as shown in Table 4 can be 
duplicated (R2=.99995) for a given condition.  

 
Table 4  

Cumulative percentages for data of negative distribution 

X(CF%) 10 20 30 40 50 60 70 80 90 100

Y(F%) 6.773 8.471 9.230 9.572 10.003 10.370 5.137 11.168 11.495 12.404

Y(CF%) .773 15.244 24.474 34.046 44.049 54.419 64.933 76.101 87.596 100.0
00

 
For space reasons, details about theoretical models (optimal G(X) function) and its 

definite integration for other simulated conditions are omitted here. Details are available 
from the first author upon request. 

Criteria for index evaluation 
Theoretically speaking, an index of inequality derived from the full sample data should 

reflect more accurately the inequality, both between-group and within-group. Accordingly, 

45826.
3
1254704.

2
1746713.0).254704x.746713x( 21

0 ≅×+×=+∫ dx
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M1 (Jackknife mean Gini), M2, M3 should perform better than any index of inequality 
derived from grouped data, where within-group inequality is ignored. In addition, any index 
of inequality computed by definite integration should perform better than any index of 
inequality approximated by the trapezoidal, the parabolic, and the other remaining 
approaches. Therefore, definite integration (DI), M1, M2, and M3 were used as index 
evaluation criteria. For practical use in a small sample, M2 was adjusted upward by a 
small-sample component, 1/(n(n-1)), instead of 1/n2, as recommended by Deltas (2003). He 
proposed that the Gini coefficient should be adjusted by n/(n-1) in the small sample setting to 
reduce “small-sample downward bias”.  This principle was applied to the grouped-data 
settings as well. 
    The criteria used to evaluate the performance of the Gini indices under various 
simulation conditions are: 
1. the difference between DI and M1, M2, M3, 
2. the estimation error between DI and its approximated methods, 
3. index critical features (etc., decomposability, available standard error, and sensitive to 

group size, average years of schooling, and schooling dispersion). 
 
 

RESULTS 
The results of the simulation study are broken down by the size of SD of education 

attainment simulated. Following reports of the indices themselves are maximum/minimum 
error reports for each SD broken down by the groupings size of 10 or 5. 

Impact of Average Schooling Skew for Specific Dispersions 
Tables 5, 6 & 7 report the calculated Gini summary statistics and show the impact of 

average schooling with SD = 2 for Table 5, SD = 3.5 for Table 6, and SD = 5 for Table 7. 
Within each table the average years of schooling for undeveloped, developing, and 
developed countries are given as 9, 11, and 13 years respectively. 
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Table 5 

The Gini coefficients based on the various estimation approaches by grouping size, and 
schooling level（SD=2） 

Schooling 
levels 

(positive) 
9 yrs 

(normal) 
11 yrs 

(negative) 
13 yrs 

full sample approach 
M2 

M3, M1* 

 
.13018 
.13005 

 
.10801 
.10790 

 
.08662 
.08654 

Grouping  size 10 5 10 5 10 5 

I.  DI** .12784 .12601 .10608 .10426 .08348 .08290 

II. Gini family       
G1 
G2 
G3、G4、G5 
G6、G7 

.1417 

.0902 

.1275 

.1275 

.1515 

.0902 

.1212 

.1212 

.1182 

.0774 

.1064 

.1064 

.1261 

.0730 

.1008 

.1008 

.0941 

.0595 

.0847 

.0847 

.1009 

.0595 

.0808 

.0808 
* M1 is an alternative way of computing Jackknife mean Gini proposed by 
Ogwang (2000). ** indicates definite integration. 

 
Table 6 

The Gini coefficients based on the various estimation approaches by group size, and average 
schooling（SD=3.5） 

Schooling 
levels 

(positive) 
9 yrs 

(normal) 
11 yrs 

(negative) 
13 yrs 

full sample approach 
M2 

M3、M1 

 
.25689 
.25664 

 
.19792 
.19773 

 
.15778 
.15762 

Grouping size 
I.  DI 

10 
.2530 

5 
.2508 

10 
.1947 

5 
.1936 

10 
.1470 

5 
.1469 

I.  DI** .12784 .12601 .10608 .10426 .08348 .08290 

II. Gini family       
G1 
G2 
G3、G4、G5 
G6、G7 

.2803 

.1783 

.2523 

.2523 

.3018 

.1783 

.2415 

.2415 

.2169 

.1401 

.1952 

.1952 

.2338 

.1359 

.1870 

.1870 

.1659 

.1061 

.1493 

.1493 

.1789 

.1061 

.1432 

.1432 
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Table 7 

The Gini coefficients based on the various estimation approaches by interval size, and 
average schooling（SD=5） 

Schooling 
levels 

(positive) 
9 yrs 

(normal) 
11 yrs 

(negative) 
13 yrs 

full sample approach 
M2 

M3、M1 

 
.29091 
.29061 

 
.25384 
.25359 

 
.19030 
.19011 

Grouping  size 
I.  DI ≈ 

10 
.28726 

5 
.28498 

10 
.24934 

5 
.24837 

10 
.18270 

5 
18217 

I.  DI** .12784 .12601 .10608 .10426 .08348 .08290 

II. Gini Family       
G1 
G2 
G3、G4、G5 
G6、G7 

.3176 

.2045 

.2858 

.2858 

.3425 

.2045 

.2740 

.2740 

.2776 

.1801 

.2499 

.2499 

.3000 

.1742 

.2401 

.2401 

.2052 

.1306 

.1846 

.1846 

.2215 

.1300 

.1772 

.1772 
As shown in each of Tables 5, 6 and 7 there are several clear and consistent patterns in 

the data. 
 

1. Any measure of inequality derived from the full sample data, under various distribution 
forms, almost produces an identical coefficient, as appeared in M1, M2, and M3. 

2. G3, G4, G5, G6, and G7 across various forms of distribution and group sizes all resulted 
in an identical value. Following the definitions used in G6, index values for G3, G4, G5, 
G6 should be identical (See explanation in the end of G6’s definition). The unexpected 
finding for G7 requires further study.  

3. The standard error of estimation was smaller from the full sample approach, like in 
Jackknife mean Gini, than the grouped data approach, like in G7. This may be due to the 
fact that within-group inequality is ignored in grouped data. 
Interestingly, if G3~G7 index estimates are multiplied by an upward factor, n/(n-1), 

each is numerically equivalent to G1 under each simulation condition (e.g., .1275x(10/9) 
= .1417 for the 9 year positive 10-group condition in Table 5). It indicates that G1 is an 
unbiased estimator for smaller grouping sizes. This unexpected finding also deserves further 
study. The upward adjustment factor, n/(n-1), suggested by Deltas(2003) , is usually 
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recommended for a small-sample setting or when the number of groups used is limited. 

Error Analysis for Grouped Data 
Error rates were somewhat more distinctive regarding factors manipulated in the study.  

Using each of M1, M2, M3, and DI (definite integration) as a criterion, the error values 
between the specific criterion and the other evaluated indexes under the group sizes of 10 
and 5 are further analyzed for each size of variance. In order to easily identify the different 
sources of error of estimation, the maximum error and minimum error for each index under 
each simulation condition are compared and summarized in Table 8. Specific error patterns 
are analyzed under 3 sizes of SD as follows. 

 
Table 8  

Combined conditions for maximum and minimum error of estimation produced  
by Gini-based indices 
Index Error Range Error Type SD Distribution Group Size Criteria Absolute 
G1/G2  Max 2 Positive  5 All* .0213~.0400 
 Max 3.5 Positive  5 All  .0449~.0786 
 Max 5 Positive  5 All  .0516~.0864 
 Max 2 Positive  10 All  .0115~.0400 
 Max 3.5 Positive  10 All  .0234~.0786 
 Max 5 Positive  10 All  .0264~.0864 
 Min 2 Negative  5 All  .0143~.0271 
 Min 3.5 Negative  5 All  .0211~.0517 
 Min 5 Negative  5 All  .0312~.0603 
 Min 2 Negative  10 All  .0075~.0271 
 Min 3.5 Negative  10 All  .0081~.0517 
 Min 5 Negative  10 All  .0149~.0597 
G3/G4  Max  2 Positive  10 M1/M2/M3  .0025~.0027 
G5/G6 Max  2 Negative  10 DI  .0012 
/G7  Max  3.5 Negative  10 All  .0023~.0085 
 Max  5 Negative  10 All  .0019~.0057 
 Max  2 Positive  5 All  .0048~.0090 
      續後頁
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接前頁       
 Max  3.5 Positive  5 All  .0093~.0154 
 Max  5 Positive  5 All  .0110~.0169 
 Min  2 Normal  10 All  .0003~.0016 
 Min  3.5 Normal  10 All  .0005~.0027 
 Min  5 Normal  10 All  .0006~.0039 
 Min  2 Negative  5 All  .0021~.0058 
 Min  3.5 Normal  5 M1/M2/M3  .0107~.0109 
 Min  3.5 Negative  5 DI  .0037 
 Min  5 Negative  5 All  .0050~.0131 
Note: * applicable to all criteria: M1、M2、M3、and DI. 

 
 

SD=2. 
In general, several common error patterns found in Table 8 are: 

1. Gini family indices displayed the greatest error for the positively skewed distribution of 
education attainment. This implies that measures of inequality will be least accurate 
when the distribution of education attainment is positively skewed (a scenario for 
under-developed countries). 

2. No matter whether the grouping size is 10 or 5, the difference between the definite 
integration estimate and the trapezoidal estimate (not reported here) is less than the 

expected value, 
24 N

k (Espericueta, 2001). Note that 

22 4
)(

4 n
abk

n
k −

=  

   where k refers to the maximum value of the 1st derivative for the Lorenz curve 
(K≧|G’(x)|), n is the grouping size. In the present study, the range of integration is 

between 0 and 1.  Thus, b=1, a=0. Since the Lorenz curve is always an increasing 
function, its maximum value will fall at x=1. For example, k can be obtained by 
computing the 1st derivative for the G’(x)=.746713 + 2*.254704x. Under this function, 
k=1.256121 if x=1. G(x) is the optimal function for a given simulation condition. 

3. Except for the over-estimated G1, compared with the indices derived from the full 
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sample data, the Gini-based indices are all under-estimated for all conditions where 
grouped data are used. This may be due to the within-group inequality ignored in the 
data analysis (Lerman & Yitzhaki, 1989). This is consistent with Deltas’s (2000) report 
that: “the use of grouped data caused a downward bias”. 

4. Data with a grouping size of 10 resulted in smaller estimated errors than data with a         
grouping size of 5. As expected, index accuracy increases with the number of grouping 
intervals. 

SD=3.5 
Again, considering M1, M2, M3, and DI as a criterion, the error scores between the 

criterion and the other evaluated indices under the group size of 10 and 5 are further 
analyzed and significant patterns are found below: 
1.  The Gini-based indices display the greatest error with the positively-skewed distribution 

of education attainment when the grouping size is 5; while they demonstrate maximum 
error with the negatively skewed data when the grouping size is 10. The extent of error of 
the Gini-based indices of inequality depends on both grouping size and generated data 
shape.  

2. No matter whether the grouping size is 10 or 5, the difference between definite integration 

estimate and the trapezoidal estimate is less than the expected value, 
24 N

k ( Espericueta, 

2001).  
3. Except for the over-estimated G1, compared with indices derived from full sample data, 

the Gini-based indices are all under-estimated across all conditions using grouped data. 
This may be due to the ignored within-group inequality (Lerman & Yitzhaki, 1989). 
Deltas (2000) also reports: “the use of grouped data caused a downward bias”. 

  4. Data with a grouping size of 10 would result in smaller estimated errors than data with a 
grouping size of 5. Index accuracy increases as the number of grouping intervals 
increases. 

SD=5 
     Use M1, M2, M3, and definite integration as a criterion, the error scores between the 

criterion and the other evaluated indexes under the group size of 5 and 10 are further 
analyzed below:  
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1. G1, and G2 indices display the greatest error with the positively skewed distribution of 
education attainment regardless of grouping size. This implies that the measures of 
inequality will be least accurate when the distribution of education attainment is 
positively skewed (here again, this is a scenario often found in under-developed 
countries). Yet, the Gini-based indices do not produce clear patterns of error. For a 
grouping size of 10, the maximum error occurs with the negatively skewed distribution, 
while for a grouping size of 5, it occurs for the positively skewed distribution. Thus, 
there is no clear minimum error consistently found on the Gini indices. 

2. No matter the grouping size (5 or 10), the difference between definite integration 

estimate and the trapezoidal estimate is less than the expected value, 
24 N

k  Espericueta, 

2001).  
3. Except for the over-estimated G1, compared with indices derived from the full sample 

data, Gini-based indices are all under-estimated across all conditions when based on 
grouped data. This may be due to the ignored within-group inequality (Lerman & 
Yitzhaki, 1989). Deltas’s (2000) reported: “the use of grouped data caused a downward 
bias”.. 

4. Index estimation error increases with the SD of the educational attainment distribution as 
shown in Table 8 as SD increases from 2 to 3.5 to 5. 

5. Again, data with a grouping size of 10 would result in smaller estimated errors than data      
with the grouping size of 5. That is, index accuracy also increases with the number of 
groups used. 

     As shown in Table 8, G1, and G2 demonstrate greatest estimation error with positively 
skewed data and least estimation error with negatively skewed data, regardless of variance, 
grouping size, and criterion index used. The other Gini-based indices G3, G4, G5, G6, G7 
produce similar patterns of maximum error as in G1 and G2 when the grouping size is 5; 
yet, when the grouping size is 10, they tend to display greatest error with negatively skewed 
data and least error with normal data. These findings do not consistently agree with Figini’s 
(1998) results (See Figini’s Table 2). In inequality studies, we are more concerned about the 
maximum error condition rather than the minimum error condition. Therefore, we should 
pay more attention to the conditions that produce the maximum error for an index. Absolute 
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error range (max~min) is also shown in Table 8 for each type of error. It can be used to 
decide whether the estimated error for an index is tolerable. 

 
 

CONCLUSIONS 
   Because only a limited number of testing conditions were investigated, generalization of 
these findings may be restricted. However, several major conclusions can be drawn from the 
results: 
1. Index effectiveness will be influenced in general by the number of groups, forms of 

distribution and size of variance involved. The accuracy of inequality measures increases 
as the number of groups increases or as the size of variance decreases. When the 
distribution of education attainment is positively skewed and the number of groups is 5, 
Gini indices will produce their maximum error of estimation. When the distribution of 
education attainment is negatively skewed, the number of groups is 10, and the SD= 3.5 
or 5.0, most Gini indices (except G1 and G2) will produce their maximum error of 
estimation. 

2. Among the Gini indices derived from grouped data , G3, G4, G5, G6, and G7 perform 
equally well in terms of maximum error of estimation.   

3. Perhaps, due to the large sample used in the study (N=1000), the outcomes of M1, M2, 
M3 derived from the full sample data appear almost the same, especially for the pair of 
M1 and M3. M1 and M3 are the best options when the analyzed data are individual 
observations because their standard errors can be computed. 

4. Except the over-estimated G1, the other Gini indices were all under-estimated. This 
downward bias of estimates might be attributed to ignored intra-group inequality 
(Lermann & Yitzhaki, 1989) and downward small-sample bias (Deltas, 2003). And their 

estimated errors are less than 
24 N

k . This finding is in accord with Espericueta’s theory 

(2001). Ourti and Clarke (2011) also recommended a correction term(n2/(n2-1), n=# of 
groups) to remove the main bias of the Gini index due to grouping. 

5. Interestingly, the modified education Gini index, G7, appears the best option when data 



 
 

李 茂 能 

嘉大教育研究學刊                              ．75． 

are organized into groups. This is important since G7 is the only grouped-data index for 
which one can compute a standard error. 

6. G1 remained an unbiased estimate of inequality for the smallest grouping size of 5. 
These conclusions have important implications for investigating educational attainment 

inequality in practice. First, to reduce error of user-estimation, the number of groups 
employed should be more than 5. If 5 or fewer groups are used or the estimated error is not 
tolerable, it is recommended that one upwardly adjust the G3, G4 or G5 estimates by a factor 
of n/(n-1).  Interestingly, with this upward adjustment, they were numerically equivalent to 
the G1 index.  Accordingly, G1 is recommended whenever a smaller size of grouping is 
necessary. Third, interpretation of an index’s under-estimation should be considered, 
especially dealing with a positively skewed distribution with large variance (a scenario often 
found in under-developed countries). Fourth, G7 is recommended for the grouped-data case, 
while M1, M2, M3 are recommended for data with individual observations.  
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Geni-Derived Index Effectiveness in 
Educational Inequality Measurement 
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Abstract 
In a simulation study, eleven frequently-used Gini indices of educational inequality 

were investigated for their sensitivity to educational attainment distribution and the number 
of groups used for data analysis.In general, index effectiveness was influenced by the 
number of grouping, forms of distribution, and size of variance involved. The accuracy of 
inequality measures increases as the number of groups increases or as the size of variance 
decreases. G1, and G2 demonstrate greatest estimation error with positively skewed data and 
least estimation error with negatively skewed data, regardless of variance, grouping size, and 
criterion index used. The other Gini-based indices G3, G4, G5, G6, G7 produce similar 
patterns of maximum error with postively skewed data when the grouping size is 5; yet, 
when the grouping size is 10, they tend to display greatest error with negatively skewed data 
and least error with normal data. Indices of Gini are all under-estimated except for the G1. 
G1 seems an unbiased index for a small grouping size less than 5. Therefore, the choice of 
index and method of implementation can have critical bearing on the conclusions reached. If 
5 or fewer groups are used or the estimated error is not tolerable, it is recommended that one 
upwardly adjust the G3, G4 or G5 estimates by a factor of n/(n-1).   
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