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Role of down-regulation of ERCCI1 expression in
metformin enhancing paclitaxel-induced cytotoxicity in
human lung cancer cells

Yi-Jhen Huang, and Yun-Wei Lin*

Molecular Oncology Laboratory, Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan

ABSTRACT

Metformin, a widespread used and well-1olerated biguanide class drug for treating type 2 diabetic patients, has recently discovered therapeutic effects on diversified human cancer cells.
Paclitaxel (taxol), as a mitotic inhibitor isolated from the bark of the Pacific Yew tree and Taxus brevifolia, is an universal antitumor drug that can use in treatment of non-small cell
lung cancer (NSCLC). Excision repair cross-complementary | (ERCC1) is a DNA excision repair protein. Whercas, overexpression levels of ERCCI in cancer cclls have been
positively associated with the DNA repair capacity and repress cancer cells death to cause a poor prognosis in humans NSCLC treated with platinum-based chemotherapy. According to
my preceding research, when paclitaxel used in human NSCLC cell lines HI1703 cell, increased phosphorylation of mitogen-activated protein kinase (MAPK) kinase 3/6 (MKK3/6)-p38
MAPK as well as protein and mRNA levels of ERCCI. Moreover, down-regulation of p38 MAPK activation by cither the pharmacological inhibitor SB202190 or p38 MAPK-siRNA
was capable of enhancing NSCLC sensitivity to paclitaxel. In this rescarch, we presumed that metformin raise the paclitaxcl-induced cytotoxic cffect by decreasing ERCCI expression
and MKK3/6-p38 MAPK activation. Together, our experiments demonstrated that down-regulation of ERCC1 expression and paclitaxel co-treated with metformin may provide varied
lung cancer cells therapeutic effects in clinically useful combination.
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Fig.2. Paclitaxel increased protein levels of phospho-
MKK3/6-p38 MAPK and ERCC1.

Fig.5. Metformin decreased paclitaxel-elicited p38
MAPK phosphorylation, ERCCI1 protein expression
and increased cytotoxicity in human lung cancer cells.



Introduction

Malignant melanoma can resistant to radiation therapy
and chemotherapy, and has characteristics like high
rate of metastasis and rapid cell growth. It makes the
clinical therapy of malignant melanoma with the limited
success. In previous experiments, we found that B16
melanoma cells with a-melanocyte-stimulating hormone
(a-MSH) stimulation showed less sensitive to STI-571
(imatinib)-mediated cytotoxicity.

In melanoma cells, there is no definitive evidence that
metastasis and drug resistance are correlation with
melanin content. Therefore, the aim of this study
assayed the correlation of natural products, such as
resveratrol and arbutin, between melanin content and
metastatic potency on B16 melanoma cells. We use a-
MSH to promote melanin biosynthesis, for researching
the effects of melanin biosynthesis on cell growth, drug
resistance and metastasis in B16 melanoma cells, and
analyzing the effects on melanin-related pathways, such
as c-kit and Wnt/f-catenin pathways, as well as protein
expression, including microphthalmia-associated
transcription factor (MITF) and matrix
metalloproteinases (MMPs).

We also use recombinant human stem cell factor
(rhSCF), which can bind c-kit receptor on cell
membrane, to activate c-kit signaling pathways, to
further investigate the cell viability, melanin content, c-
kit signaling pathway and MITF protein expression on
B16 cells with the treatment of STI-571, resveratrol and
arbutin.

Materials and Methods

STI-571 Resveratrol Arbutin
[+ a-MSH B16 melanoma cells + rhSCF
— with the treatment of : ?
STI-571, resveratrol
and arbutin
—  Cell viability Cell viability

— Melanin content || Melanin content —

“—  Western blot Western blot —
B-catenin ‘ phospho-c-kit _

—  MITF H MITF

— MMP-9 —‘

Regulatory effects of natural products on cell growth,
melanin content and metastasis in melanoma cells

Yin-Chi Wu, Hui-Fen Liao*

Department of Biochemical Science and Technology, National Chiayi University

Results and Discussion
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Fig 1. Effects of a-MSH-combined treatment with STI-571,
resveratrol and arbutin on cell viability in B16 melanoma
cells.

Melanin content:
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Fig 2. Effects of a-MSH-combined treatment with STI-571,
resveratrol and arbutin on melanin content in B16 melanoma
cells.
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melanoma cells by a-MSH-combined treatment with STI-571,

resveratrol and arbutin.
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Fig 5. Expression of MMP-9 in B16 melanoma cells in a-
MSH-combined treatment with STI-571, resveratrol and
arbutin.
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Fig 6. Effects of rhSCF-combined treatment with STI-571,
resveratrol and arbutin on cell viability in B16 melanoma cells.
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Fig 7. Effects of rhSCF-combined treatment with STI-571,

resveratrol and arbutin on melani in BI6 melanoma cells.
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Fig 8. Expression of phospho-c-kit in B16 melanoma cells by
rhSCF-combined treatment with STI-571, resveratrol and arbutin.
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Fig 9. Expression of c\'mp]nsmlc and nuclear \IH'F in Bl6
melanoma cells by rhSCF-combined treatment with STI-571,
resveratrol and arbutin.

Conclusions

» STI-571, resveratrol, and arbutin inhibited cell viability
and melanin content, but didn’t have significant effect on
MMP-9 expression in B16 melanoma cells.

» STI-571 has inhibitory effects on nuclear B-catenin/MITF
protein expression of B16 melanoma cells, suggesting that
STI-571 may downregulate P-catenin-related pathways
and inhibit downstream gene regulation, such as MITF.

» Resveratrol and arbutin have inhibitory effects on
phospho-c-kit protein level in rhSCF-treated BI6
melanoma cells, but have no significant effect on MITF
protein level. It could be hypothesized that resveratrol and
arbutin could downregulate rhSCF-activated c-kit signal
pathways, but such effect may not regulate the expression
of MITF.
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Study on removal of plant browning products and
purification of a toxic protein with antineoplastic activity

from Bidens pilosa var. radiata
Yen-Hui Lee!, Ching-Hsein Chen?, Ping-Lin Ong'

!Department of Biochemical Science and Technology & ?Department of Microbiology, Immunology and Biopharmaceuticals
National Chiayi University, 300 Syuefu Road, Chiayi County 60004, Taiwan

Based on our previous study, extracts of Bidens pilosa var, radiata
contain anti-proliferation activity to colorectal cancer cells. Due to a lot of
browning products interfering subsequent experimental analysis and
purification processes, it is necessary to overcame this issue by adding

various chemicals to remove browning products. The cytotoxicity of

different preparation of purified proteins from Bidens pilosa var. radiate is Y ] Fig.2. Effect of different agents on the color of
monitored with the SRB (Sulforhodamine B) assay. The protein extract Fig.1. Analysis of the protein extracts precipitated onium sulfate precipitate dissolved  protein
was precipitated with 35%~65% saturated ammonium sulfate, and de- with different range of ammonium sulfate on the solution.

colored with polyvinyl- polypyrrolidone (PVPP), aluminum sulfate, f,g‘i;;'f’,",{""’ of human colon adenocarcinoma cell

polyethyleneimine (PEI), and polyethylene glycol (PEG) 4,000 plus &

ammonium sulfate aqueous two phase system, respectively. PEI shows the Sondue — cTrEEETE -
best de-colored effect on protein sample solution. The PEI is subsequent i ol
removed by a DEAE anion exchanger. The purified protein fraction still $
show high cytotoxicity: Therefore, dissolved ammonium sulfate precipitate -|

solution is de-colored by PEL, and purified with DEAE Sepharose™ and Q
Sepharose™ anion-exchanger for further characterization of toxin, named

Log [dilution factor |
Fig.3. Use different agents as adsorbent to treating
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Fig.4. Native-PAGE (A) and SDS-PAGE (B)

“bidenin”. sty of sk sulfiis preéip from cach Ammonium sulfate precipitate tlilsslo_lvcf.l protein
< e : - A d solution that effect on the cell viability of human
Bidenin is separated and detected by the native or SDS polyacrylamide treating agents. colon adenocarcinoma cell (DLD-1).

gel electrophoresis with the gel slicing technique. The estimated molecular = dii—

weight of bidenin is identified by SDS-PAGE is about 8§ kDa. The . - wiigurs | fam [

identification of bidenin will be completed by mass spectrometry in the ™ i g 0 wd [ [

coming future. i ‘ b ’ wf e [,
e wg |
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Fig.5 DEAE-Sepharose™  anion  exchange Fig.6.Q-Sepharose™  anion  exchange
chromatography of decolored protein solution. chromatography of DEAE separated protein
sample (D6).
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y ; T o s Fig.7.Native-PAGE (A) and SDS-PAGE (B) analysis of Q separated protein solution (Q4) purified by
Saturated Ammonium Sulfate Precipitate Native-PAGE extraction with gel slicing. Q4 : Q separated protein sample, N1-N6 © gel extracted
protein solutions, M : LM.W. protein marker.
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sample, 51~56 @ gel exwracted sample solutions, M L M.W. protein marker, B * bovine serum
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Conclusion
The result of remove for browning products , PEl show the best de-colored
effect on protein sample solution and clearly anz band on gel. by
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PAGE with gel slicing technique remained its cytotoxicity, named “bidenin”. The DEAE purified toxic sample : lane 3 © Q purified toxic sample © lane 4 © Native-PAGE gel slicing
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molecular weight of bidenin showed about 88 kDa on SDS-PAGE. P eiz BisPr e ¥ il o
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Role of p38 MAPK signal mediated MutS homologue-2
(MSH2) expression in regulating gefitinib and metformin-
induced cytotoxicity in human lung squamous cancer cells

ABSTRACT
Gefitinib, a quinazoline-derived tyrosine kinase inhibitor, has anti-tumor activity in vivo and in vitro. Human MutS homologue-2 (MSH2) plays a central role in promoting genetic
stability by correcting DNA replication errors. The present study investigated the effects of p38 mitogen-activated protein kinase (MAPK) signal on gefitinib-induced MSH2
expression in human non-small cell lung squamous cancer cell lines. Exposure of gefitinib increased MSH2 protein and mRNA levels, which was accompanied by MKK3/6-p38
MAPK activation in H520 cells. Moreover, knockdown of p38 expression by SB202190 and specific small interfering RNA (siRNA) significantly decreased gefitinib-induced
MSH2 expression by increasing mRNA and protein instability. Enhancing p38 activation using constitutively active MKK6 (MKKG6E) increased MSH2 protein and mRNA levels.
Specific inhibition of MSH2 by siRNA significantly enhanced gefitinib-induced cytotoxicity. Metformin, an anti-diabetic drug, might reduce cancer risk. In human lung squamous
cancer cells, metformin decreased gefitinib-induced p38 MAPK-mediated MSH2 expression and augmented the cytotoxic effect and growth inhibition by gefitinib. Transient
expression of MKKGE or HA-p38 MAPK vector could abrogate metformin and gefitinib-induced synergistic cytotoxic effect in H520 cells. Together, metformin can down-
regulate p38 MAPK-mediated MSH2 expression and enhance the cytotoxicity of gefitinib to human squamous lung cancer cells.

AIM Fig. 3. Knockdown of MSH2 expression by si-RNA transfection or inhibition of p38
T MAPK activation by SB202190 or specific si-p38 MAPK RNA transfection enhanced
H520 V- ﬁb _ gefitinib-induced cytotoxicity.
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RESULT Fig. 4. Metformin decreased gefitinib-induced phospho-MKK3/6-p38 MAPK and
Fig. 1. Gefitinib increased phospho-MKK3/6-p38 MAPK, MSH2 MSH?2 protein, and mRNA levels. and enhanced gefitinib-induced cytotoxicity.
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Fig. 5. Over-expression of MKK6E or HA-p38 MAPK restored the metformin-
suppressed p38 MAPK activation and MSH?2 protein expression in gefitinib-exposed
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Investigation of the molecular mechanism of tumorigenesis in 5-Fu- and

Oxaliplatin-resistant human colorectal cancer stem cells
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University College of Medicine, Kaohsiung, Taiwan,
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(INTRODUCTION] RESULTS|

Colorectal cancer in Taiwan is already the highest cancer incidence rate, and __HCT-116 __HCT-116/0xR_HCT-116/5FU

third cancer mortality rate. Chemotherapy treatments have made great
contributions to the inhibition of cancer recurrence, and metastasis. But,
Chemotherapy is often resistant in about half of the patients, resulting in cancer
recurrence and progression. A lot of evidence are finding to suggest that cancer
stem cells will lead chemoresistance and cause tumor sustained growth.

MOTIVE| ...
!

However, colorectal cancer stem cells(CSCs) for drug resistance mechanisms
remain unclear.

In this research, we use the mainstay chemotherapeutic drug, 5-Fluorouracil HCT-116 HCT-116/0xR HCT-116/5FU
(5-FU) and Oaxliplatin (OxR) were selected with the colon cancer cell line HCT-
116. The cancer stem cell lines were screened for colorectal cancer by the use of
chemical resistant cloning method to analysis of whether a cancer stem cell
characteristics. Study of the effect of SDF-1 on cancer stem cells signaling and

uPA expression and the regulation of the Becl-2/Bax and P-gp proteins may be
related to resistant chemotherapy drug resistance mechanism.

HCT-116 _ HCT-116/0xR HCT-116/5FU

CD44

HCT-116 HCT-116/0xR HCT-116/5FU

Oct4

Study Design

Fig.d CRC and CSC r.‘cﬂ's extibit dwigc.r i Fm!r..a\rwrr of stemr cell celinlar markers. Immunoflucrescence staining. for CD33, CD44, SOX-

Screening drug-resistant cancer stem cells
and Octd was done or HCT-116 parental and OxR or SFU cells, OxR or SFU cells from both cell lines showed high expression in localizatior
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Qur study is to study the mechanism
B <y 1. Stem cell cellular marker Ch44 HCT-116
SDF-1 signaling or Bel-2/Bax and P- " . (2.0pz'ml OxR)
: 2, Cellinvasion SOX-2 -
gp proteins may be related to 3. Wound healin
susceptibility and chemical drugs of Targets ’ g 0'_:14 o
the HCT-116 cell lines arg fructin . i -
changes after 5-FU and Oxaliplatin Fig.2 CRC and CSC cells of stem cell cellular markers by 3 :
treatment. Western bioiting analyss.

HCT-116/0sR

(MATERIALS & METHODS ]

S HUT-116 HCT-116
: 2 (normal) (2.0pg/ml OxR) HOT-116/0xR
i L ) 2.0pgml OxR)
HCT-116/0xR
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This result finds that chemoresistant cells were enriched for CSC Fig.¢ GSC cells have increased migrators arnd invasive capaciy. Boyden chamber o
markers and showed higher tumorigenic capacity in vitro. Next, we will @ modified Boyden chamber assays were done to compare the migratory and | =nosakT
N L . ivasive capabilities of € RCundCSCccHs, » HOSCXCR
be determined that effects of 5-FU-resistant and OxR-resistant it i
colorectal cancer stem cells were associated with overexpressed Bel- = HOHNaC
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SDF-1 Bcl-2

2/Bax, P-gp and uPA proteins via activation of CXCL12 (SDF-1)/ CXC 5
chemokine receptor 4 (CXCR4). These findings provide further insight g ' 1 ‘ o

3 : i 3 -
into the molecular mechanism and suggest promising biomarkers for 'F,"‘,L iisonon Fig.6 ComparedSDF-1 and Bel-2 expressedof the CRC and CSC cells
clinic therapy of colorectal cancer patients outcome of patients with ' dpeimets.afall i Rl

lymph node metastasis. A S S -
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