FACS Advance Training Course Concept of *Parameter Setting* and *Data Analysis*

尚博生物科技有限公司 www.cell-bio.com.tw Glenn Yang

apoptosistw@gmail.com 02-27855860-0953062485

- Region and Gate
- Statistic
- Positive vs. Negative
- Data Analysis (WinMDI 2.8)
- Professional Reporter (FCSExpress 3.0)

Why Region and Gate?

Particle (cell) Discrimination

- Problem :
 - Very often, samples are heterogeneous
 there are events which are not of interest (other cells, debris, electronic noise).
 - Several clusters of interest mixed together

Why Region and Gate?

Particle (cell) Discrimination

- Solution :
 - Discriminate the cells of interest.
 - Need to exclude the unwanted events from the analysis.

What is a Region?

A **region** can be defined as set of points carefully selected by the user that determine an area on a graph.

Several regions can be defined on the same graph.

- ➔ Isolate the cluster(s) of interest
- → Better discrimination of the cluster(s) using color

Different styles of regions

Cluster discrimination

Positive/Negative cell identification

What is a Gate?

A **gate** can be defined as one or more regions combined using Boolean (logic) operators (AND, NOT, OR)

Defines a subset of the data to be displayed.

• Used to compute **statistics** and characterize the subset of events selected

 Get rid of noise and save space on disks

- •Real-time gating vs. software gating
- •Establishing regions
- •Gating strategies
- •Quadrant analysis
- •Complex or Boolean gates
- •Back gating

Real-Time vs. Software Gating

Real-time or live gating:

-restrict the data that will be accepted by a computer (some characteristic must be met before data is stored)

Software or analysis gating: -excludes certain stored data from a particular analysis procedure

Establishing Regions

•Establishing regions: -objective or subjective? -training/skill/practice

•Statistics

Region 1 established

No Gated

Gated on Region 1

Complex or Boolean Gating

With two overlapping regions, several options are available:

🗆 🔤 Gate List 📃 🖻 🖻			
Window: untitled			
	Set All	to Default	
Multi color Color	Label	Definition	
╞ 🗹 🛑 🖸	31	R1 and R2	
🗢 🗹 📃 🖸	32	Not R1 and R2	
🗢 🗹 🔲 🖸	33	R1 and Not R2	
🗢 🗹 🔲 🛛	34	R1 Not R2	
🗢 🗹 📃 🖸	35	Not (R1 and R2)	
🗢 🗹 🔲 🖸	36	R2 and R3 or R1	
🗢 🗹 🗖 🦉	37	R7	
🗢 🗹 🗖 🛛	38	R8	-
		· · ·	

Not Region 1:

Not Region 2:

Region 1 or Region 2:

Boolean Gating

Region 1 and Region 2:

Boolean Gating

Not (Region1 and Region 2):

Light Scatter Gating

Human white blood cells

Back-Gating

Region 4 established

Prior the statistical analysis of the clusters, consider these two factors :

1. Sample size:

The precision of the statistical analysis depends on the number of cells analyzed (Poisson Law \rightarrow Std Deviation = $\sqrt{(n)}$) When the number of events increases the coefficient of variation of the estimate decreases.

2. **Incorrect choice of statistics** impacts the relevance of the results.

The mean(s)

The **mean** = one of the most widely used statistics in flow cytometry. Gives the **average intensity** of a parameter in a population.

Some definitions

- Arithmetic Mean ("average")
 - Sum of the "n" individual values of a group divided by n

Arithmetic mean = $(V_1 + V_2 + V_3 \dots + V_n)/n$

Geometric Mean

Multiply the "n" individual values of a cluster together and get the nth root of this product.
 Geometric mean = √ (V₁ x V₂ x V₃ ... xV_n)ⁿ

What does it mean?

The median

- Frequently used to describe flow cytometry data.
- Refers to the point at which 50% of the events are on either side of a particular channel. *Example : the 2501st cell in a population of 5001.*
- If population normally distributed : Median = Mean = Mode
- Median shifted to a higher intensity value than the mode if the population distribution is skewed to the right and shifted to a lower intensity if skewed to the left.

If data pile up in the last channel, how far off scale are they?

 \rightarrow Impossible to get a true mean value

 \rightarrow Median gives a better information about the central tendency of the population

 \rightarrow If more than half the population is off-scale, then median and mean cannot give the central tendency of the population.

Other Statistics

Standard Deviation (Sd)

Measures the spread of a distribution = the dispersion of the values from each event around the mean of a population.

Coefficient of Variation

Defined as the (Standard Deviation /mean) X100.

- → CVs are always a percentage
- → Measure of the peak width.

Mode

The mode is the most frequently occurring value in a data range. If symmetrical distribution, then mode = mean = median If the distribution is skewed, then these three values are different.

Skewness

Characterizes the asymmetry of a distribution \rightarrow So it is related to the mean value of the population. If Value < 0 \rightarrow asymmetrical distribution \rightarrow tail towards the left \rightarrow lower values with respect to the mean. If Value > 0 \rightarrow tail towards the right \rightarrow higher values with respect to the mean.

Kurtosis

Kurtosis refers to the relative "flatness" of a distribution and is also related to the mean of the distribution.

A Value<0 \rightarrow relatively flat distribution, A Value>0 \rightarrow a relatively peaked distribution $\}$ compared to the normal distribution

- Blank Control: autofluorescence, instr setup.
- Negative Control: the extent of nonspecific staining
- Isotype Control: for indirect staining
- Positive Control: antibody functionality

- Blank Control: use Untreated or Unstained Cell to distinguish auto fluorescence.
 - Why Blank Cell??

Blank Control: use Untreated or Unstained Cell to distinguish • auto fluorescence. Stained Cell **Unstained Cell** Cell-Bio

• Blank Control: use Untreated or Unstained Cell to distinguish auto fluorescence.

• Blank Control: use Untreated or Unstained Cell to distinguish auto fluorescence.

• Inverted Control.

陽性界限設定原則

