國立嘉義大學九十五學年度 生物事業管理學系碩士班招生考試試題

科目:統計學

一、某生技公司欲知產品廣告預算(X)與銷售金額(Y)是否有直線關係存在,今在九個地區分別記錄資料如下:

(單位:萬元)

		(1 12:14)							
地區	1	2	3	4	5	6	7	8	9
廣告預 算(X)	8.34	6.41	3.41	3.83	2.57	11.64	1.26	2.49	1.92
銷售金 額(Y)	210.3	177.9	129.9	162.3	130.1	207.5	113.5	147.1	137.5

已知:

$$\sum X = 41.56$$
, $\sum Y = 1416.1$, $\sum X^2 = 289.422$, $\sum Y^2 = 232498.97$, $\sum (X - \overline{X})^2 = 97.5074$, $\sum (X - \overline{X})(Y - \overline{Y}) = 900.13$, $\sum (Y - \overline{Y})^2 = 9683.50$

- 1. 請說明簡單迴歸模式之假設。(5分)
- 2. 請以最小平方法試求迴歸直線 $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \circ (5 \ \mathcal{G})$
- 3. 請問 X 與 Y 之間的樣本相關係數。(5 分)
- 4. 若廣告預算 6.3 萬元時,則預測銷售金額為多少?(5 分)
- 二、1. 請敘述中央極限定理(Central Limit Theorem)。(10 分)
 - 2. 設某有機農場生產的有機蔬菜,其平均重量為120克,且標準差為40克。假設 隨機抽出100包有機蔬菜,請問該批有機蔬菜平均重量介於110至130克之機率 為何?(10分)
- 三、一農業生技公司主要生產銷售A、B兩種植物種苗,供應亞洲客戶及南美洲客戶。根據其訂戶統計,亞洲訂戶所佔的比例A植物種苗比 B 植物種苗高6%。該農業生技公司想知道這些訂戶中,亞洲訂戶所佔的比例 A 植物種苗比 B 植物種苗高多少。下表為觀察的結果:

	亞洲客戶	南美洲客户
A 植物種苗	72	168
B植物種苗	55	195

(單位:萬株)

當顯著水準為 10%時,試問這些訂戶中,亞洲訂戶所佔的比例是否 A 植物種苗比 B 植物種苗高 6%以上?(20分)

四、食品飲料工廠啟用兩種不同容量設計之生產線 A、B,分別生產 100c.c.及 250c.c. 之綠茶飲料。經過多次的測試得 A 生產線所生產的綠茶飲料平均為 100c.c.,標準差為 5c.c.。B 生產線之平均為 250c.c.,標準差為 10c.c.。試說明那一條生產線生產狀況較穩定?為什麼?(20%)

五、去年到某農場體驗藥膳料理活動的共有360人,各月份人數如下表:

月份	1~2月	3~4月	5~6月	7~8月	9~10月	11~12月
人數	80	75	44	23	56	82

已知去年共有365天。試在 $\alpha = 0.01$ 下,檢定體驗藥膳料理活動是否有流行的月份?(20%)

附錄一: 主要可能參考公式

$$\hat{\beta} = \frac{n\sum XY - \sum X\sum Y}{n\sum X^{2} - (\sum X)^{2}} = \frac{\sum XY - n\overline{XY}}{\sum X^{2} - n\overline{X}} = \frac{S_{XY}}{S_{X}^{2}}$$

$$\frac{(\hat{p}_{1} - \hat{p}_{2}) - (p_{1} - p_{2})}{\sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}}$$

$$\frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sqrt{\sum (X - \overline{X})^{2} \sum (Y - \overline{Y})^{2}}}$$

背面尚有附錄