國立嘉義大學九十四學年度 生物機電工程學系碩士班招生考試試題

科目:自動控制

-, For a system with output y and input r described by the following equation:

$$\frac{d^5 y}{dt^5} + 2\frac{d^4 y}{dt^4} + 8\frac{d^3 y}{dt^3} + 11\frac{d^2 y}{dt^2} + 16\frac{dy}{dt} + 12y = 5\frac{d^2 r}{dt^2} + 4\frac{dr}{dt} + 7$$

- (a) Find the transfer function of the system. (5%)
- (b) Determine the stability of the system using the Routh-Hurwiz criterion. (10%)
- (c) Write down an equivalent state space representation. (5%)
- (d) Sketch the state variable diagram. (5%)
- The block diagram of a control system is given in Figure 2.
 - (a) Determine the closed-loop transfer function from R(s) to Y(s). (5%)
 - (b) Draw the root locus of the system with as a varying parameter. (15%)
 - (c) Determine the value of for the system to be critically damped. (5%)

Figure 2

- Ξ_{x} (a) The individual responses of two linear control system elements A and B each to a unit step input are given in Figure 3a. Use the response data to estimate transfer functions for A and B. (15%)
 - (b) The elements A and B are now placed in a feedback control system, as shown in Figure 3b, in which the proportional gain constant K is adjustable. Derive an expression for the closed-loop transfer function and determine the range of values of K for which the system will be stable. (10%)

Note: Values of peak overshoot for a second order system are given in Table 1.

Table 1 Peak overshoot for second order system

_									
ζ	۲ 0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
C.	% overshoot	53	37	25	16	10	4	1	

四、Derive the state variable equations (10%) for a DC motor system (Figure 4) that has a constant field voltage E_F , an applied armature voltage $e_a(t)$, and a load torque $\tau_L(t)$. Also obtain the transfer function (5%) with ω_{t} as the output, and determine the steady-state angular velocities corresponding to the following sets of inputs:

(1) $e_a(t) = E$, $\tau_1(t) = 0$ (5%) and (2) $e_a(t) = 0$, $\tau_1(t) = L$ (5%).

Figure 4