國立嘉義大學九十七學年度轉學生招生考試試題

科目:微積分(理工學院用卷)

一、填充題:(每題7分,共70分)(請標明題號,並將答案寫在答案卷上)

1.
$$x = \lim_{x \to 0} x^x =$$

2.
$$\Rightarrow y = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}, \ \ \ \ \ \frac{dy}{dx} = \underline{\hspace{1cm}}$$

3. 求曲面
$$z = \sqrt{18 - x^2 - 2y^2}$$
 在點 $(3, 2, -2)$ 的切平面方程式 _____。

4. 若函數
$$f(x) = \begin{cases} x^2 + 3x + b, & x \le 1 \\ -x^3 - ax^2 + x, & x > 1 \end{cases}$$
,在 $x = 1$ 時, $f(x)$ 微分存在,求 $a + b =$ _____。

5. 令
$$f(x) = \frac{1}{x^2 - 4x + 3}$$
 , $-1 \le x \le 0$, 若 $f(x)$ 有最大值 M 與最小值 m , 求 $M + m = ______$ 。

6. 試求下列不定積分:
$$\int \cos^2 x \sin^2 x \, dx = \underline{\hspace{1cm}} \circ$$

9. 在
$$xy$$
-平面上,求直線 $y=3x$ 與曲線 $y=x^3+2x^2$ 所圍成之區域面積_____。

10.
$$\exists R = \{(x, y) \mid x \ge 0, y \ge 0, 0 \le x^2 + y^2 \le 4\}$$
, $\Rightarrow f = \iint_R (x^2 + y^2)^{\frac{3}{2}} dx dy = \underline{\qquad}$

二、計算題:(每題15分,共30分)(請標明題號,並將計算過程寫在答案卷上)

1. 計算
$$\int_{-\infty}^{\infty} e^{-x^2} dx = ? (15 分)$$

2. 假設已知函數
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
,試求: