國立嘉義大學九十三學年度 應用化學系碩士班招生考試(甲組)試題

科目:綜合化學 I

- 一、無機化學 (50%)
- 1. Write down the element symbols according to the periodic table for the first row of transition metals from atomic number 21 (Scandium) to atomic number 30 (Zinc). (10%)
- 2. Calculate the spin-only moment μ s for the following atoms and ion. (10%)
 - (a) Fe (b) Fe $^{2+}$ (c) Cu (d)Cr
- 3. Based on the Ligand Field Theory, consider metal- to- ligand $(M \rightarrow L)$ bonding and ligand-to-metal back-bonding $(L \rightarrow M)$ two cases; (10%)
 - (a) which case is a acceptor?
 - (b) after d orbital energy level splitting, which case has a lower t 2g (ligand) orbitals?
 - (c) which one will leave the central metal ion with a large negative charge?
 - (d) which case favors low-spin configuration?
 - (e) which type bonding will increase stability for complex?
- 4. Determine Term Symbol and Ligand Field Stable Energy (LFSE) for the following compounds: (10%)

Term Symbol LFSE $\begin{pmatrix} 0 \end{pmatrix}$

- (a) $[Co(CO)_4]^{-1}$
- (b) $[Cr(CN)_6]^{4-}$
- (c) $[Fe(H_2O)_6]^{3+}$
- (d) $[Cu(H_2O)_6]^{2+}$
- 5. OCN has three possible structures, O=C=N, O-C, N, O, C-N, (a) determine the formal charge for O and N in each structure (b) predict which structure is the most important (reasonable) one ? (10%)

二、有機化學 (50%)

I. Please complete the following reactions: (2 points each, 40 points total)

$$C_3H_7$$
 NH_2 Br_2 KOH

10.
$$\begin{array}{c|c} & & & & \\ & S & S & & \\ & & & \\ & H & H & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Ar
$$\longrightarrow$$
 HgSO $_4$ H $_2$ SO $_4$

15.
$$H_3C$$
 H
 CH_2I_2
 $Zn-Cu$

9.
$$H_3C$$
 CH_3

III. Propose a resonable structure and assign all proton signals as far as you can. (10%)

