國立嘉義大學九十七學年度轉學生招生考試試題

科目:普通物理學 〈請將答案寫在答案卷上〉

第一部分:選擇題(每小題4分,共40分)

- 1. An ice skater with a moment of inertia of 0.600 kg-m² about a vertical axis is spinning with an angular speed of 12.6 rad/s. The skater brings her arms in closer to the axis, decreasing her moment of inertia to 0.240 kg-m², find her new angular speed:
- (A) 0.600 rad/s (B) 12.6 rad/s (C) 31.5 rad/s (D) 0.240 rad/s (E) 63.0 rad/s.
- 2. A particle moving along the x axis is acted upon by a single force $F = F_0 e^{-kx}$, where F_0 and kare constants. The particle is released from rest at x = 0. It will attain a maximum kinetic energy of:
- (A) $\frac{F_0}{k}$ (B) $\frac{F_0}{e^k}$ (C) kF_0 (D) $\frac{1}{2}(kF_0)^2$ (E) ke^kF_0 .
- 3. A 16 kg block is attached to a cord that is wrapped around the rim of a flywheel of diameter 0.40m and hangs vertically, as shown in figure 1. The rotational inertia of the flywheel is 0.50 kg-m². When the block is released and the cord unwinds, the acceleration of the block is:
 - (A) 0.15g (B) 0.56g (C) 0.84g (D) 1.0g (E) 1.3g.
- 4. In the circuit (Figure 2) $\xi = 120$ V, $R_1 = 30\Omega$, $R_2 = 20\Omega$, and $R_3 = 10\Omega$. What is the current i_1 a long time after the switch has been closed?
 - (A) 0.0 A (B) 2.4A (C) 3.3 A (D) 8.0 A (E) 18 A
- 5. A point charge +q is placed inside a spherical conducting shell with inner radius a and outer radius b as shown in Figure 3. The total charge of the spherical conducting shell is equal to -4q. What are the surface charges on the inner surface q_a and outer surface q_b ?
- (A) $q_a = -q$ and $q_b = -3q$ (B) $q_a = -3q$ and $q_b = -q$
- (C) $q_a = 0$ and $q_b = +4q$ (D) $q_a = +q$ and $q_b = +4q$ (E) $q_a = -q$ and $q_b = -4q$

Figure 1

Figure 2

Figure 3

- 6. Two harmonic waves with frequencies 8.000 Hz and 8.250 Hz are superimposed. The waves each have amplitude A. Find the beat frequency:
- (A) 51.05 Hz (B) 1.571 Hz (C) 0.7855 Hz (D) 2.000 Hz (E) 0.250 Hz.

- 7. A diatomic gas ($\gamma = 1.4$) in an engine is initially at 300 K, 1.000 atm pressure, and occupies a volume 900 cm³. The gas is compressed adiabatically by a piston in a cylinder to 0.100 its initial volume. Find the final pressure of the gas, with $10^{1.4} = 25.1$:
 - (A) 7.5×10^2 atm (B) 3.65×10^{-2} atm (C) 3.65×10^{-2} atm (D) 25.1 atm (E) 3.3×10^2 atm.
- 8. A block of ice is taken out of a freezer and warms to the temperature of a large room at 298 K. During the process the ice absorbs 9.58×10^5 J. Find the entropy change of the room:
- (A) $+3.21\times10^3$ J/K (B) -3.21×10^3 J/K (C) $+2.7\times10^2$ J/K (D) -2.7×10^2 J/K (E) +312 J/K
- 9. Parallel light of wavelength 633 nm is incident on a slit of width 0.12 mm. The total angular width of the central diffraction maximum on a screen located 3.50 m from the slit is:
 - (A) $2\cos^{-1}(5.3\times10^{-3})$
- (B) $\cot^{-1}(5.3\times10^{-3})$
- $(C)\cos^{-1}(5.3\times10^{-3})$

- (D) $\sin^{-1}(5.3\times10^{-3})$
- (E) $2\sin^{-1}(5.3\times10^{-3})$.
- 10. Find the inductive reactance of a 25.0 mH inductor at a frequency of 60.0 Hz:
 - (A) $15.1 \times 10^3 \Omega$ (B) 9.43Ω (C) 377Ω
- (D) $25.0 \times 10^{-3} \Omega$
- (E) 60.0Ω .

第二部分:計算題(共60分;請注意有效數字以三位為原則)

- 1. A nonconduction disk of radius R has a uniform surface charge density σ C/m². It rotates at angular velocity ω as depicted in figure.
- (a) What is the current passing through a surface perpendicular to the plane of the disk? (7 分)
- (b) What is the total magnetic field at the center of the disk. (8 分)

- 2. A current of 15.0 A is in a circular coil of radius 5.00 cm with 50 turns of wire. The plane of the coil makes an angle of 30.0° with a uniform magnetic field of magnitude 0.150 T. (i.e., the normal vector of the plane makes an angle of 60.0° with the magnetic field)
 - (a) Find the magnitude of the magnetic dipole moment μ of the coil. (5 分)
 - (b) Determine the magnitude of the torque on the coil. (5 分)
 - (c) Determine the potential energy of the coil in its given orientation. The potential energy is defined as P.E.= $-\overrightarrow{u} \cdot \overrightarrow{B}$ (5 %)
- 3. A 2.00 kg block of ice is taken out of a freezer at 253 K, melts, and warms to the temperature of a large room at 298 K. Calculate the entropy change $\Delta S = \int_{i}^{f} dQ/T$ in each stages. You may use the specific heat of ice $c_{ice} = 2050 \text{ J/(kg - K)}$, the specific heat of water

$$c_{\text{water}} = 4186 \text{ J/(kg - K)}$$
, the latent heat of fusion of water $L_{\text{f,water}} = 3.335 \times 10^5 \text{ J/kg}$, $\ln(273/253) = 0.0760823$, and $\ln(298/273) = 0.0876217$

- (a) warming the ice from 253 K to 273 K (5 分)
- (b) melting of the ice at 273 K to water at 273 K (5 分)
- (c) warming of the cold water at 273 K to the temperature of the room. (5 分)
- 4. X-rays of wavelength 0.2 nm are scattered from a carbon target. If the scattered radiation is detected at 60° to the incident beam, find
 - (a) the Compton shift $\Delta\lambda$ (7分)
 - (b) the kinetic energy imparted to the recoiling electron (8分)