國立嘉義大學九十一學年度轉學生招生考試試題

科目:線性代數

- 一、填充題: 60% (請標明題號,並將答案寫在答案卷上。)
 - 1. The projection of (1,2,3) onto the plane spanned by (0,1,0) and (-1,0,1) is ______. (10%)
 - 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator such that T(1,1) = (1,-2), T(1,0) = (2,1), then T(5,-3) =_____. (10%)
 - 3. Let W be the subspace spanned by (1,1,0,1,1), (2,0,0,1,0), (1,3,0,2,3) and (4,-2,0,1,-2),

then
$$\dim(W) =$$
 . (10%)

4. (a). Let A be 4×4 matrix and |A| = 7. Then

(b). The determinant of the
$$n \times n$$
 matrix $\begin{vmatrix} 1-n & 1 & 1 & \dots & 1 \\ 1 & 1-n & 1 & \dots & 1 \\ 1 & 1 & 1-n & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & 1-n \end{vmatrix}$ is ______. (4%)

- 5. Let $A = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$. Then
 - (a). The eigenvalues of A are (5%)
 - (b). The dimensions of the corresponding eigenspaces are . (5%)
- 6. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$. Then
 - (a). An invertiable matrix P such that $P^{-1}AP$ is diagonal is ______. (4%)
 - (b). $A^{20} =$. (3%)
 - (c). $A^{1999} =$ _____. (3%)
- 二、計算證明題: 40% (請標明題號,並將計算證明過程寫在答案卷上。)
 - 1. Show that if A is an invertible matrix, then A^{T} is also invertible. (10%)
 - 2. Find the image of T(x, y, z) = (x 2y + z, 2x y z, -x 4y + 5z). (10%)
 - 3. Let $T: V \to V$ be a linear transformation on the *n*-dimensional vector space V. If $\lambda_1, \lambda_2, ..., \lambda_n$ λ_r are r distinct eigenvalues of T and $v_1, v_2, ..., v_r$ are their corresponding eigenvectors, prove that $v_1, v_2, ..., v_r$ are linearly independent. (10%)
 - 4. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Find a (real) orthogonal matrix P for which $P^T A P$ is diagonal. (10%)